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ONE-DIMENSIONAL HYDROELASTIC OSCILLATIONS OF THREE-LAYERED PLATES* 

S.N. BESHENKOV and S.F. GORBAN 

A method is proposed for calculating one-dimensional (using modes of 
cylindrical bending) and axially-symmetric degenerate vibrations of 
three-layered plates which are clamped in an infinitely rigid screen on 
the boundary of separation of fluid media. The account is presented as 
it applies to axially-symmetric vibrations, but the changes which have 
to be introduced in solving the planar problem are indicated in the 
appropriate places. The dependence of the resonant frequencies and of 
the amplitudes of the vibrations on the geometrical and physical 
parameters of the layers, the asymmetry in the structure of the plate 
and the damping properties of the filler are investigated. The special 
features of the hydroelastic vibrations of three-layered plates 
compared with the vibrations of homogeneous plates are noted. The 
latter have been treated in a number of papers /l, 2/** 

Let us consider the degenerate axially-symmetric vibrations of a circular three-layered 
plate which has been clamped in an infinitely rigid screen on the boundary of separation 
between fluid half spaces. Omitting the time factor e-io' , we shall describe the bending 
of the plate by means of equations constructed by invoking the extensively used /3/ hypotheses 
concerning the incompressibility of the filler in the transverse direction and the linear 
distribution of the tangential displacements throughout its thickness 

b, $ VW - b,d + + b, $ + b,D2T - b,02v - 

b,cp = ht, c1C2V2w - c,02V2w - b,V%u - c302w + b,Dq + 

b,FDrp - b,dDrq = -(q + p) + 6Dt 

D+++-, DL$-D, OLD--& Q = 41- QZ> 

P=Pl-Pv t=h+t, 
b, = -EJ&, b, = p,hP, b, = -2Gh, b, = -=i,Eh3 - 2E,h% 

b, = 2/,ph3 + 2p,h26, cl = -2/,E,63, c2 = 2i,p,63, cQ = -2 (ph + pr6) 

E, = E,‘l(l - v:), E = E’/(l - 9) 

Here w is the deflection of the plate, cp is a function describing the rotation of 
sections of the filler, or, qz, t,, and tz are the normal and tangential loads acting on the 
upper and lower covers, p is the difference between the acoustic pressures on the two sides 
of the plate, E,', vr, and Pr are the modulus of elasticity, Poisson's ratio and the density 
of the cover material of thickness 6 and E', v, p and G are the same characteristics and 
the shear modulus of the filler material with a thickness of 2h. 

We note that, when the differential operators in (1) are replaced by the corresponding 
derivatives with respect to the x-coordinate and, also, when the tangential loads t, and t, 
are equal to zero, we obtain the equations for the bending of a three-layered plate-strip /4/. 

We shall seek a solution of Eqs.(l) which satisfies the condition that the deflection 
is equal to zero on the plate contour in the form of a series in Bessel functions 

UJ = XkwkJ, (qria), cp = &cp,J, (x,r/a) (2) 

where z1 are the roots of the equation J,,(x) = 0, a is the radius of the plate and 
summation over k from 1 to 00. 

Z, denotes 

In the case of a planar problem, expressions (2) are replaced by 

w = Ekwk sin a,$, 'p = &cp, cos c+, ok = kfi/l 

where 1 is the width of the plate-strip. 
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*"Golovanov V.A., Musychenko V-V., Peker F.N. and Popov A.L., Scattering and radiation of 
sound by elastic shells in a fluid, Preprint 261, Inst. Problem Mekhaniki Akad. Nauk SSSR, 
Moscow, 1985 and the bibliography given there. 
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In order to satisfy the remaining boundary conditions, we apply an additional bending 
moment M and a tangential load T to the contour. The overall load on the plate will therefore 
consist of the exciting load q (4 the acoustic pressure p(r), loads with an intensity 
q’, applied over the area of a ring of width s1 at a distance e from the edge of the plate 
and the tangential load t which acts over a ring of width s on the edge of the plate. 

In order to pass to the edge bending moment and the edge load, we will assume that 

q’cl --t p , P’E -+ M, it -+ T when cl, e + 0 (3) 

We expand the above-mentioned components of the load on the plate in a series of Bessel 
functions. Here, we approximate the unknown function p(r) in the interval tO,al by means 
of a piecewise-linear function. By making use of the orthogonality of Bessel functions, and 
taking account of formulae (3) and the approximation which has been adopted for p (r) , we 
find the expansion coefficients for the above-mentioned loads. 

Here N is the number of segments into which the plate is subdivided, pj are the 
acoustic pressures on the boundaries of these segments and Zj denote summation over j from 
1 to N+1'. When j=l and j = N -j- 1, expressions for $k1 are obtained from the 
general formula after the second and first integral, respectively, have been discarded. In 
solving the planar problem the components of the load are represented by trigonometric series. 

By substituting expansions (2) and (4) into Eqs.lll we can find the coefficients 

Here 

the 

2hA, J& (Pk + P,) 
~JI (xkl A, T- A 

k 

Expressions for qk are obtained from (5)~ by replacing B, by -4, and Ak by C, . 
We determine the bending moment M and the tangential force T on the edge of the plate 

two 
and 

(6) 

by satisfying 
when the edge 

Here 

The sums S rj and S,j are obtained from S, and S, on replacing qk by zkj. 
By substituting expressions (7) into (5) and then into (21, we obtain an expression for 
bending of the plate which can be written in the form 

W = Zk (WL' + EjW&j'pj)JO (ZRria) (9) 

the two remaining boundary conditions. To be specific, by considering the case 
is restrained dw/dr = 'p = 0 when r = a, we get 

M=& 
8(&S<- S,Q~+ ZjQljpj)+ha(S.Ss-S~Sui- BjQzj~j) 

s2 - wa 
(7) 

TS&.- 
SISB - m. + ZIQS,Pf 

s*s - szss 

The difference between the acoustic pressures acting at a point r = (m - 1)Ar on the 
sides of the plate is expressed in terms of its deflection using a Huygens' integral /Et/ 
it is given by the formula 12/ 
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R,B = (m - 1)2Ara + pB - 2 (m - t)Arp eos 0 

In the case of a plate-strip, the expression for the reaction of the medium at a point 
.r = (m - 1)A1 has the form 

I 

pm =~~~(~~)H~)(k~(rn--)AZ--+,))dq 
0 

In formulae (10) and (111, k~ = o/c, is the wavenumber, PO, and c0 are the fluid 
parameters and H,(l) is a Hankel function. The coefficient n is equal to 1 or 2 when there 
is a fluid on one or on two sides of the plate. 

By putting m = 1,2,. . ., N + 1 in formulae (lo), we arrive at a system of algebraic 
equations for finding the nodal values of the acoustic pressure on the surface of the plate 

(% is the Kronecker delta) 

Zj&njPj = hn; In = 1,2,...,Nf 1 (22) 

By separating the real and imaginary parts in Eqs.(lZ) and solving the resulting system 
of 2(N + 1) equations, we find the real and imaginary components of the acoustic pressure 
at the nodes. We then calculate the deflection of the plate using formulae (9). 

We will now present the results of calculations of the one-dimensional hydroelastic 
vibrations of three-layered plates which are excited by concentrated loads. The integrals 
Ikm in (13) were representedas the sum of the integrals over the individual segments of the 
plate on each of which they were calculated using Gaussian quadrature formulae. The accuracy 
of the results obtained was checked by varying the number of segments into which the plate 
was subdivided and the number of terms which were retained in the series. As a numerical 
analysis shows, their values should be chosen using the formulae I?= &.JT= n-i- 2, where n is 
the number of the closest resonant frequency. A further increase in the above-mentioned 
parameters had practically no effect on the results in the case of the examples being con- 
sidered. 

Fiy.1 
Fig.2 

The frequency dependences of the real and imaginary components (curves 1 and 2) of the 
deflection at the centre of a three-layered plate strip which was freely supported along its 
edges are shown in Fig.1. This plate strip had a width L= 0.5 m and consisted of aluminium 
facings with a thickness 6=3x10-* m and a polyvinylchloride (PVC) filler (E'= 5~lO~Nrn-~, 
v = 0.4, p= 0.3x18 kgm-%l with a thickness %- 2xlO-2m. The plate was excited by a concentrated 
force F = tOsS (z - Il.%) Nm" _ There was one-sided contact with water. By virtue of the symmetry 
of the load with respect to the centre of the plate, there were no even resonances and the 
fifth resonance occurring beyond the limits of the figure is observed at a frequency o= 3702e+. 
Here, the modulus of the deflection attains the value 1 to I5 = 2,753x 10-' m. 

The difference between the third and the fifth modes of resonant vibrations and the 
natural modes of these vibrations in Uacuo are illustrated by graphs 1 and 2 in Fig.2 which 
show the change in the imaginary part, which dominates in the resonance, the bending u= 
Im w (2)/i w (m I on the surface of the plate. The corresponding resonant frequencies of the 
vibrations in YQCUO (the characteristic frequencies of the plate) are: {~I,08,06}= (854,3065, 
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6021) s-l. 

It is seen from the results which have been presented that, in the case of the hydro- 
elastic vibrations of three-layered plates, the same features are retained as those noted in 
f2, 3/ in the case of homogeneous plates. At the same time, there are a number of differences. 
To begin with, the decrease in the amplitude of the resonance vibrations as the number of the 
resonance increases is significantly slower than in the case of homogeneous plates. 

For comparison, we point to the fact that, in the case of a homogeneous aluminium plate 
of the same weight per unit length and width, the deflection at the centre at the resonant 
frequencies (01. oII, ea) = (84, 2230.7670) s-1 attained the values (1 w 1 1, 1 w 1 8rI wb 1) = (26.32,2.884,0.4016) x 
10-G m. The above-mentioned effect showed up most clearly when the width (radius) of the plate 
was reduced, the thickness was increased and the rigidity of the filler was reduced, that is, 
when the parameters are varied in such a way as to be accompanied by an increase in the effect 
of shear deformations on the transverse vibrations. 

-Value of barameter- 
being varied 1 o*,S-’ 

~~0.3 m 

6 =0.15.10-2 m 

2C= 1 5.10-s m 

E’ = 1.25.1Oa Nm-a 

p= 0.75.10skgm-3 

E1’=0.36. 10” Nm-2 

9, = 1.35.10~kgm3 

- 

I 
2226 

1096 

4196 

7145 

4393 

2052 

3672 

2167 

T 
“2, s-1 

1353 

1030 

1818 

30G3 

3426 

1212 

1617 

1303 

_ 

Table 1 

960 

799 

1149 

1817 

2462 

837 

1031 

917 

This can be seen by analysing the amplitudes of the resonant hydroelastic vibrations 
of circular three-layered plates when they are excited by a concentrated force F = 10 N at 

the centre which have been presented in Table 1. Construction 1 consisted of aluminium layers 

with a thickness 6 = 3 x10-% m and an EK filler (A' = 25 x 10' Nm-' , Y = 0.4, p = 1.5xioJ kgm*) 
with a thickness 2h= 3 x10-*m and a radius a= 0.6 m. The plate was restrained along its 

periphery and there was a one-sided contact with water. The subsequent constructions differed 

in any one parameter. The value of the parameter which was varied (the index 1 refers to the 

facings) is given in the second column while the values of the first three resonant frequencies 
and deflections at the centre are given in the subsequent columns. The numbers in brackets 
are the resonant frequencies of the vibrations of the plate in vacua. 

It should be noted that the effect of a change in the plate parameters is most pronounced 
in the case of its first resonance. Its shift to lower frequencies as a consequence of a 
reduction in the thickness and stiffness of the facings or the filler is accompanied by an 
increase in the amplitude of the resonant vibrations. A reduction in the radius of the plate 
and the density of the filler and facing materials give rise to the reverse effect. 

The effect of the damping properties of the filler on the resonant vibrations of three- 
layered plate-strip which has been considered above was investigated by introducing the 

complex elastic constants E = E (1 - is) and T: = G(l - in). 
When the amplitudes of the resonant vibrations shown below for different values of the 

loss factor rl 

11 0 0.01 0.1 0.5 
l~l1x104,m 8.06 7.87 6.44 3.59 
I ~12 x IO? m 7.98 6.52 2.47 0.69 
Iwlsxl~,m 2.76 1.8 0.662 0.181 

are compared, it is seen that a substantial reduction in them is obtained at high values 
(10-Z - 10-l) of n. when the damping of the vibrations due to the scattering of energy is 
comparable with their damping by the fluid. 

In order to estimate the effect of the asymmetry of the structure of the plate on the 
resonant vibrations at a constant overall thickness of its facings, a solution of the problem 
being considered was obtained using the equations for the vibrations of an asymmetric three- 
layered plate strip presented in /4/. As a result of these calculations it was established 
that the first resonant frequency of plates with an asymmetric structure lie somewhat lower 
than in the case of plates with the same thickness of the facings and the amplitude of their 
vibrations is greater here, particularly in the case of a heavy filler. The values of the 
subsequent resonant frequencies were found to be smaller, while the amplitudes of the 
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vibrations are greater in the case of plates with a symmetric structure and, here, this 
effect is most pronounced in the case of plates with a light, low stiffness filler. 

In particular, when the thicknesses of the facings of the plate strip which has been 
considered above are changed to the vales 6,= 5x10-'m and &= 10+ m, the following values 
of the resonant frequencies and deflections at the centre were obtained: {e,,o,, es)= (144.1708, 

4626) s-l, ( I IO Ilr 1 w Ia, 1 U) Is) = (8.705, 5.841, 1.516)x 10-O m. 
In concluding, we note that the investigations which have been carried out (some of the 

results have been presented above in the text) showed that the resonant frequencies of three- 
layered plates lie below the corresponding resonant frequencies of homogeneous plates with 
the same weight per unit length, while the amplitudes of the vibrations in them are several 
times greater. An exception is the first resonance of plates with light fillers of the poly- 
vinylchloride (PVC) type, which is shifted to higher frequencies, while the amplitude of the 
vibrations is smaller. 
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